Chapter 4 Euclidean Geometry

4.1
Euclidean Parallelism, Existence of Rectangles

4.2
Parallelism and Trapezoids:  Parallel Projection

4.3
Similar Triangles, Pythagorean Theorem, Trigonometry

4.5
The Circle Theorems

Homework 6

4.1
Euclidean Parallelism, Existence of Rectangles

We begin with a definition of parallel lines:

Two distinct lines L and M are said to be parallel iff they are in the same plane and do not meet.

We also need the concept of a transversal.  A transversal is a line that intersects two other distinct lines.  For example, the third side of a triangle is a transversal.

The author has a pictorial glossary for alternate interior angles, corresponding angles, and interior angles on the same side of a transversal.  These terms apply to the angles whether or not the lines are parallel.

4.1.1
Parallelism in Absolute Geometry
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If two lines in the same plane are cut by a transversal so that a pair of alternate interior angles are congruent, then the lines are parallel.

This theorem will be proved BEFORE we accept the axiom of parallel lines.  It shows that parallel lines exist in Absolute Geometry.

Proof:

Let L and M be two lines cut by a transversal T.  Let angles 1 and 2 be alternate interior angles.  Suppose L and M are not parallel and they intersect at some point R.

Then we have a triangle and one of the alternate interior angles is actually an exterior angle of this triangle.  Since the other angle is interior, it is actually a remote interior angle and by the Exterior Angle Inequality the exterior angle is strictly larger than the remote interior angle.  This contradicts our hypothesis so our supposition is in error and the lines are actually parallel.

Axiom P1
Euclidean Parallel Postulate

If L is any line and P any point not on L, then there exists in the plane of L and P one and only one line that passes through P and is parallel to L.

With the scenario in the axiom, there are three possibilities for parallel lines:

· none
(we’ve seen this with Spherical Geometry)

· one
(this is the familiar Euclidean Geometry situation)

· many
(we’ll see this in Chapter 6 with Hyperbolic Geometry)

There are immediate and familiar theorems and corollaries that follow from making this choice.  

Theorem 4.1.1
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The Transversal Theorems for Parallelism pages 216 & 217

Example 2 
page 216 is the proof of Theorem 4.1.3
Exterior Angle Theorem for Euclidean Geometry.  

Be sure to read it and enjoy the proof.  The corollary to 4.1.3 is one of the most famous theorems in Euclidean Geometry.  It states that the sum of the interior angles of a triangle is a constant 180.

Example 3
is the proof of yet another handy theorem

Theorem 4.1.4

The Midpoint Connector Theorem
page 218 and 219 is very well done.  Please read the proof carefully.  It’s corollary is very handy indeed.

Homework Hints

Problem 10
this one is pretty straightforward

Problem 16
remember the shortcuts to congruence in Chapter 3

Problem 22
Be careful with your picture; it needs to look something like this.  
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4.2
Parallelism and Trapezoids:  Parallel Projection

A very careful definition of quadrilateral is written out on page 224.  Set theory is naturally a part of all the material on quadrilaterals.

“A rhombus is a parallelogram having two adjacent sides congruent.” This means that the set of rhombuses is a proper subset of the set of parallelograms.  And the set of squares is a proper subset of the set of rhombuses.  There are also oblique parallelograms; these are the parallelograms that have no right angles.  This is a subset of parallelograms that intersects rhombuses and arbitrary parallelograms and is mutually exclusive with squares.
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Subsets of a set “inherit” properties of the larger set. The following 4 theorems use the word “parallelogram” and the author means for you to understand that the facts apply to rhombuses and squares as well.

Theorem 4.2.1

A diagonal of a parallelogram divides it into two congruent triangles.

The proof is a nice one.  This particular proof is a Euclidean specific proof.  It was not something we could have written before we selected the Parallel Postulate as an axiom. 

The 3 bulleted proofs are nice facts to know.  The next 3 bulleted proofs are also nice and they apply to various subsets of parallelograms.

Trapezoids

A trapezoid is a convex quadrilateral with a pair of opposite sides parallel; these are called the bases and the other two sides are called legs.  The segment joining the midpoint of the legs is called the median.

A trapezoid may or may not be a parallelogram with the definition in our text.  So trapezoids are a set with an intersection with parallelograms but a portion of the set has quadrilaterals like the one in Figure 4.15.

In some books, the definition of trapezoid says “with exactly one pair of opposite sides parallel” making trapezoids and parallelograms mutually exclusive sets.  You’ll need to check the definitions in the text you’re using to see what choice the author made.

Theorem 4.2.2

Midpoint Connector Theorem for Trapezoids
page 226

Please read the theorem.  Problem 18 is a homework problem.

Parallel Projection
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We will take two lines and a transversal to them.  The we will set up a series of segments from one line to the other and parallel to the transversal.  If the two lines are parallel, then you’ve created a stack of parallelograms that share sides and this case is not of interest to us.  We’re interested in the case where the two lines intersect and the lines parallel to the transversal create what looks like stacked trapezoids, each getting smaller to a triangle at the apex.  See Figure 4.18.  We’d like to prove that these shapes, except the final one, are trapezoids and that the ratio of a trapezoid side to the enclosing triangle side on the left is the same as the trapezoid side and the enclosing triangle side on the right.

To prove that the shape is a trapezoid we need to prove the bases are parallel and we do this in a lemma.

Lemma 4.2.1
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In (ABC, with E and F points on the sides, if 
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is NOT parallel to the side opposite, 
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The proof is very well done.  

The Corollary is the CONTRAPOSITIVE of the Lemma.  And, since the Lemma is true, then the Corollary is true.

Theorem 4.2.3

The Side-Splitting Theorem
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If a line parallel to the base
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of (ABC cuts the other two sides 
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at points E and F respectively, then 
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Examples 1 and 2 show calculations using these results.

Moment for Discovery
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Do the Moment for Discovery as homework problem 1

Homework hints:

Enrichment 1

Moment for Discovery

Problem 12
Show your algebra clearly, please and list the theorems you’ve used right by the steps

Problem 18

Problem 22

4.3
Similar Triangles, Pythagorean Theorem, Trigonometry

Similarity is a property that is used often in Euclidean Geometry.  Two polygons are said to be similar iff they have corresponding angles congruent and corresponding sides are proportional under some correspondence.  The multiplier for the sides is the constant of proportionality k.

Similarity is not restricted to triangles – there are similar nonagons, but we’ll look mainly at triangles.  There are 6 things to check to see that two triangles are similar.  These are listed in the gray box on page 237.  

Lemma 4.3.1

Consider (ABC with D and E on sides 
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 and 
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 respectively.

If 
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This construction creates nested similar triangles (ABC and (ADE and by doing so it asserts the existence of similar triangles in Euclidean Geometry.  In Hyperbolic Geometry, there are no similar triangles.  The concept of similar and congruent is the same for triangles in HG.

Theorems 4.3.1 – 4.3.3
are all shortcuts to similarity.

The AA Similarity Theorem is the most well-known.

Example 1 is a typical high school problem.  Part b requires a careful application of the theorem because most students declare that k = 2 rather than k = 3.  The length of side QM is 9 not 6.  

Example 2 ties the algebraic notion of the Geometric Mean to triangles.

The Geometric Mean of two numbers a and b is defined to be the square root of their product.
GM = 
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.  By squaring both sides we get 
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Let’s look at the nested triangles in Figure 4.29.  Basically we have a large isosceles triangle with a carefully constructed triangle nested inside.  The base 
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of the big triangle (ADB has been rotated inward until it just touches the side 
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 making the little triangle (ABC.  Now (B is shared by both triangles and since both triangles are isosceles, we have that (1 and (BAD are also congruent.  Thus by AA Similarity the two triangles are similar.  By the Side Splitting Theorem,
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Which, if you cross multiply, gives you the news that AB is the geometric mean of BC and DB.  That’s why the number is actually called the Geometric Mean.

The Pythagorean Theorem Derived from Similar Triangles

This is a homework exercise.  Note that (2) is giving a Geometric Mean.

Example 3 gives you a very famous right triangle construction and ties Geometric Mean into the construction.

The Trigonometry of Right Triangles

There’s a nice review of the trigonometric functions tied to a right triangle.  The Pythagorean Identity is reviewed.  The proofs of the Laws of Sines and Cosines are particularly well done.  Example 4 is a nice application of the Law of Sines.

Example 5 gets us to vocabulary that we’ll be using in Chapter 6.

A Cevian line of a triangle is a line segment from a vertex to the side opposite that vertex.  An altitude is a special case cevian line and so is a median.  In this example, the formula for the length of a cevian line is derived first and then changed to a special case cevian, the median.

Homework hints:

Enrichment 1
page 240 (1) – (5) in the Pythagorean Theorem derivation.  See the second Moment for Discovery on page 247 to get started.

Problem 2

use the Laws of Sins and Cosines and your calculator

4.5
The Circle Theorems

The earlier section on Circles (3.8, page 194) gave us definitions and facts that are true in Absolute Geometry – which means they’re true in BOTH Euclidean Geometry and Hyperbolic Geometry.  Here in 4.5 we’ll study Euclidean circles.

We begin with a very important 

Lemma 4.5.1
If (ABC is an inscribed angle of circle O and the center of the circle lies on one of it’s sides, then m(ABC = ½ m arc AC.

The proof of the lemma relies on remembering that the measure of a central angle is the measure of the arc subtended (page 196, bottom left in the gray box).

Let (ABC be an inscribed angle.  Let the center of the circle be named O.  Construct a line segment from O to the circle point at the end of the leg that doesn’t contain O.
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(BAO is isosceles and the measure of the inscribed (ABC is the same as the measure of (OAB.  Note that (COA is an exterior angle to (ABDO and it’s measure is the sum of the two remote interior angles.

m(AOC = 2 m ( = m arc AC

 thus m (  = ½ arc AC.

One important point to realize is that once we built (BAO, we really didn’t use that fact that it was inscribed in a circle; we just used Euclidean triangle facts.  This is a common practice with circle theorems.

Theorem 4.5.1 Inscribed Angle Theorem
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The proof is excellent.  Please study it for ideas.  The two examples that follow are applications of the theorem.

Corollaries 
pages 272 and 273

The proofs of these are homework problems.

Theorem 4.5.2

Two Chord Theorem



page 279

When two chords of a circle intersect, the product of the lengths of the segments formed on one chord equals that on the other chord.

Proof

Let C be a circle with center O.  Let 
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 and 
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 be two chords that intersect in the interior of circle C. [note that the point of intersection cannot be O else we’re not proving the arbitrary case].
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m(ABC = m(ACD because they are inscribed angles that subtend the SAME arc…so their measure is ½ arc DA.

The two angles labeled  are congruent because they are vertical angles.

Thus (BDF ~ (CAF by AA Similarity.

By the Side Splitting Theorem and some algebra, then, BF ( FA) = DF (FC). (
Theorem 4.5.3 Secant-Tangent Theorem
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If a secant 
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 and a tangent 
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meet a circle at points A, B, and C (the point of tangency), then PC is the Geometric Mean of PA and PB.

Proof

Let the secant line and tangent line be as described.
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Construct line segment 
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.  Note that (ABC measures ½ arc AC by the Inscribed Angle Theorem and (ACP measures the same by a corollary to that theorem.  

Thus, by AA Similarity and because they share (P,

(PBC ~ (PCA.

From the Side Splitting Theorem we have the equality:
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Which with some algebra gives that PC is the Geometric Mean of BC and PA. (
Example 3 is a nice one.

Problem 10
The hints are the dotted lines.

Problem 14
V is not the center of the circle.
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